Abstract

Quantification of hydrological components in-terms of surface runoff, stream flow and evapotranspiration is important and useful in planning and management of water resources across the river basin, including downstream delta regions. River deltas water availability; management and related disaster risk are largely influenced by the hydrological state of upstream river basins. The paper presents the results of hydrological modelling (SWAT) based long-term water balance components in river basins draining into selected delta Districts of Eastern India. Mahanadi, Brahmani-Baitarani river basins and Hooghly river and adjacent small river basins are considered. The long-term water balance components of Mahanadi and Brahmani-Baitarani river basins are similar and significantly different in Hooghly river and adjacent small river basins. The runoff coefficient is significantly higher in Hooghly river and adjacent small river basins at 0.39 compared to other two river basins (0.247 & 0.256). The evapotranspiration component is relatively low in Hooghly river and adjacent small river basins with smaller range of long-term variation. The time-series model outputs brought out the basin-specific hydrological response variations in low and high rainfall years such as changes in fraction of evapotranspiration and surface runoff. Mahanadi and Brahmani-Baitarani river basins exhibit large inter-annual variation in evapotranspiration, surface runoff fractions. The developed hydrological modelling framework is capable of incorporating future climate data and to predict the basin-scale future water availability, demand, use and to bring out resulting water scenarios that would impact river deltas in-terms of their exposure towards water related adversities, such as drought and flood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call