Abstract

At the atmosphere simulation chamber SAPHIR in Julich both Laser-Induced Fluorescence Spectroscopy (LIF) and Long-Path Differential Optical Laser Absorption Spectroscopy (DOAS) are operational for the detection of OH radicals at tropospheric levels. The two different spectroscopic techniques were compared within the controlled environment of SAPHIR based on all simultaneous measurements acquired in 2003 (13 days). Hydroxyl radicals were scavenged by added CO during four of these days in order to experimentally check the calculated precisions at the detection limit. LIF measurements have a higher precision (σ= 0.88×106 cm–3) and better time resolution (Δt = 60 s), but the DOAS method (σ= 1.24×106 cm–3, Δt = 135 s) is regarded as primary standard for comparisons because of its good accuracy. A high correlation coefficient of r = 0.95 was found for the whole data set highlighting the advantage of using a simulation chamber. The data set consists of two groups. The first one includes 3 days, where the LIF measurements yield (1 – 2) ×106 cm–3 higher OH concentrations than observed by the DOAS instrument. The experimental conditions during these days are characterized by increased NOx concentration and a small dynamic range in OH. Excellent agreement is found within the other group of 6 days. The regression to the combined data of this large group yields unity slope without a significant offset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.