Abstract

<p>In this study, we compare eight recently developed snow depth products that use satellite observations, modeling or a combination of satellite and modeling approaches. These products are further compared against various ground-truth observations, including those from ice mass balance buoys (IMBs), snow buoys, snow depth derived from NASA's Operation IceBridge (OIB) flights, as well as snow depth climatology from historical observations.</p><p>Large snow depth differences between data sets are observed over the Atlantic and Canadian Arctic sectors. Among the products evaluated, the University of Washington snow depth product (UW) produces the overall deepest Spring snow packs, while the snow product from the Danish Meteorological Institute (DMI) provide the shallowest Spring snow depths. There is no significant trend for mean snow depth among all snow products since the 2000s, however, those in regional varies larhely. Two products, SnowModel-LG and the NASA Eulerian Snow on Sea Ice Model: NESOSIM, also provide estimates of snow density. Arctic-wide, these density products show the expected seasonal evolution with varying inter-annual variability, and no significant trend since the 2000s. Compared to climatology, snow density from SnowModel-LG is generally denser, whereas that from NESOSIM is less. Both SnowModel-LG and NESOSIM densities have a larger seasonal change than climatology.</p><p>Inconsistencies in the reconstructed snow parameters among the products, as well as differences and with in-situ and airborne observations can in part be attributed to differences in effective footprint and spatial/temporal coverage, as well as insufficient observations for validation/bias adjustments. Our results highlight the need for more targeted Arctic surveys over different spatial and temporal scales to allow for a more systematic comparison and fusion of airborne, in-situ and remote sensing observations.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.