Abstract

Abstract The purpose of this paper is to compare two numerical models of vastly different complexity and computational requirements, which have been used recently in a number of midlatitude ocean simulations. Specifically, the two-layer quasi-geostrophic (QG) model of Holland (1978) is compared with the five-level primitive equation (PE) model of Semtner and Mintz (1977) for a wind-driven multi-gyre ocean, with effects of bottom topography and thermal forcing included. The dominant feature of the circulation predicted in the previous PE calculations is a strong free jet, with intense mesoscale transients which are maintained by baroclinic instability. The configuration of the QG experiment is designed to approximate closely that of the PE experiment, while retaining as much of the simplicity of the Holland (1978) model as possible. The QG model spins up to a state of statistical equilibrium, which is characterized by a meandering jet and by mid-ocean mesoscale eddies with periods and wavelengths much like...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.