Abstract

Satellites play a major role in understanding the spatial and vertical distribution of aerosols and cloud microphysical parameters over a large area. However, the inherent limitations in satellite retrievals can be improved through inter-comparisons with airborne platforms. Over the Indian sub-continent, the vertical profiles retrieved from space-borne lidar such as CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) on board the satellite CALIPSO and Cloud Profiling Radar (CPR) on board the satellite CloudSat were inter- compared with the aircraft observations conducted during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX). In the absence of high clouds, both aircraft and CALIOP showed similar features of aerosol layering and water-ice cloud signatures. As CALIOP could not penetrate the thick clouds, the aerosol information below the cloud is missed. While the aircraft could measure high concentrations below the cloud base and above the low clouds in the presence of high clouds. The aircraft derived liquid water content (LWC) and droplet effective radii (R e ) showed steady increase from cloud base to cloud top with a variable cloud droplet number concentration (CDNC). While the CloudSat derived LWC, CDNC and R e showed increase from the cloud top to cloud base in contradiction to the aircraft measurements. The CloudSat profiles are underestimated as compared to the corresponding aircraft profiles. Validation of satellite retrieved vertical profiles with aircraft measurements is very much essential over the tropics to improve the retrieval algorithms and to constrain the uncertainties in the regional cloud parameterization schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call