Abstract

Abstract Four spiraliform polar lows, two over the Sea of Japan and two over the Nordic Seas, were simulated with the Weather Research and Forecasting (WRF) model. Five mixed-phase bulk microphysics schemes (BMS) provided with WRF were run respectively in order to compare their performance in polar low simulations. The observed cloud-top temperatures (CTTs) were compared with the model simulations. Precipitation rates estimated by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and gauge-calibrated surface radar precipitation estimates around Japan were also used for validation. Although definitive validation is not possible with the available data, results from the WRF Single-Moment 6-class (WSM6) scheme appear to reproduce the cloud and precipitation processes most realistically. The model produced precipitation intensities comparable to validation products over the Sea of Japan. However, in the Nordic Seas cases, all five schemes produced significantly more precipitation than the AMSR-E estimates even though the latter estimates are known to average slightly high in the same region when validated against monthly totals measured at Jan Mayen Island (Norway).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.