Abstract

AbstractThe Lattice Boltzmann method has been widely adopted to simulate flow in porous media. The choice of appropriate boundary schemes is essential to achieve simulation accuracy; however, the criteria for the most suitable boundary treatment in the simulation of flow in porous media flow remain unresolved. Here, three types of the most commonly used boundary conditions are tested: interpolation bounce back (IBB), partial saturated method (PSM), and immersed boundary method (IBM). The dimensionless drag of face‐centered cubic (FCC) sphere array and the dimensionless permeability of a random closely packed (RCP) sphere array are calculated and compared at different viscosities and resolutions. In the FCC sphere array case where spheres are not contacted, the IBB and PSM exhibit the same accuracy and both are of the second‐order convergence rate. The IBM is less accurate and is of the first‐order convergence rate. In the RCP sphere array case where the spheres are contacted, the IBB shows finer results and a second‐order convergence rate. PSM underestimates the dimensionless permeability and increases resolution only slightly improved the results of PSM. The IBM overestimates the dimensionless permeability. These results indicate that among the three methods, the IBB is the most accurate. The PSM has the same accuracy as the IBB when sediments are not contacted; however, it loses its accuracy in the simulation of flow in closely packed porous media. This work could serve as a benchmark for further research in choosing the most appropriate method in the simulation of flow in porous media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.