Abstract

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.

Highlights

  • Atmospheric aerosols are an important component of the climate system in terms of their direct, semi-direct, and indirect radiative effects

  • This paper presents data from the National Aeronautics and Space Administration (NASA) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign (Zuidema et al, 2016), a multi-year, multiplatform collaboration to sample clouds and biomass burning (BB) aerosol over the southeast Atlantic Ocean (SEA)

  • 12 ER-2 flights yielded AirMSPI above-cloud aerosol (ACA) retrievals somewhere over the SEA; nine of the P-3 comparison cases included ER-2 overpasses, and each of these had at least one AirMSPI ACA retrieval co-located with P-3 observations

Read more

Summary

Introduction

Atmospheric aerosols are an important component of the climate system in terms of their direct, semi-direct, and indirect radiative effects. A primary factor governing the overall magnitude of these effects is the composition, size, mixing state, and concentration (and, the radiative properties) of the aerosol in a given location. Absorbing or non-absorbing particles such as sea salt will have SSA close to 1, whereas biomass burning (BB) smoke made up of more highly absorbing soot particles will have SSA less than 1 These BB SSAs are typically observed to be between 0.7 and 0.95 (e.g., Dubovik et al, 2002; Eck et al, 2013; Sayer et al, 2014), though laboratory studies show these values can be much lower under conditions of high modified combustion efficiencies and low organic (versus black carbon) mass fraction (i.e., higher BC content) (e.g., Liu et al, 2014; Vakkari et al, 2014; Pokhrel et al, 2016). SSA has been shown to evolve with BB plume location, age, mixing state, emission source, and distance from source (e.g., Haywood et al, 2003; Eck et al, 2013; Konovalov et al, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call