Abstract

BackgroundNew open-source electric-grid planning models have the potential to improve power system planning and bring a wider range of stakeholders into the planning process for next-generation, high-renewable power systems. However, it has not yet been established whether open-source models perform similarly to the more established commercial models for power system analysis. This reduces their credibility and attractiveness to stakeholders, postponing the benefits they could offer. In this paper, we report the first model intercomparison between an open-source power system model and an established commercial production cost model.ResultsWe compare the open-source Switch 2.0 to GE Energy Consulting’s Multi-Area Production Simulation (MAPS) for production-cost modeling, considering hourly operation under 17 scenarios of renewable energy adoption in Hawaii. We find that after configuring Switch with similar inputs to MAPS, the two models agree closely on hourly and annual production from all power sources. Comparing production gave a coefficient of determination of 0.996 across all energy sources and scenarios, indicating that the two models agree on 99.6% of the variation. For individual energy sources, the coefficient of determination was 69–100.ConclusionsAlthough some disagreement remains between the two models, this work indicates that Switch is a viable choice for renewable integration modeling, at least for the small power systems considered here.

Highlights

  • New open-source electric-grid planning models have the potential to improve power system planning and bring a wider range of stakeholders into the planning process for next-generation, high-renewable power systems

  • We focus on production-cost modeling, which is vitally important to power system operators and is one of the main strengths of existing, proprietary power system models

  • The 2.5% adder was used because we found that outage rates for the Oahu baseload and cycling plants in Multi-Area Production Simulation (MAPS) were an average of 2.5% higher than the sum of the maintenance schedules and forced outage rates shown in the RPS Study [59]

Read more

Summary

Results

We compare the open-source Switch 2.0 to GE Energy Consulting’s Multi-Area Production Simulation (MAPS) for production-cost modeling, considering hourly operation under 17 scenarios of renewable energy adoption in Hawaii. We find that after configuring Switch with similar inputs to MAPS, the two models agree closely on hourly and annual production from all power sources. Comparing production gave a coefficient of determination of 0.996 across all energy sources and scenarios, indicating that the two models agree on 99.6% of the variation.

Conclusions
Background
Methods
Results and discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.