Abstract

LINE-1 (L1) elements are a class of transposons, comprising approximately 19% and 21% of the mouse and human genomes, respectively. L1 retrotransposons can reverse transcribe their own RNA sequence into a de novo DNA copy integrated into a new genomic location. This activity, known as retrotransposition, may induce genomic alterations, such as insertions and deletions. Interestingly, L1s can retrotranspose and generate more de novo L1 copies in brains than in other somatic tissues. Here, we describe for the first time interchromosomal translocation triggered by ectopic L1 retrotransposition in neural progenitor cells. Such an observation adds to the studies in neurological and psychiatric diseases that exhibited variation in L1 activity between diseased brains compared with controls, suggesting that L1 activity could be detrimental when de-regulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call