Abstract
The paper presents the interchangeability conditions for the finite-dimensional, infinite-dimensional, and discrete models of dynamics of autonomous processes and, using the one-dimensional processes as an example, shows that with the certain ratio of the model parameters and appropriate choice of initial functions these conditions are satisfied. Reveals how, subject to the conditions of interchangeability, the process generated by an ordinary differential equation can be represented in the functional space by the trajectory of a discrete dynamic system.Considers dynamic models in the class of ordinary differential equations and delay differential ones. Since the solution spaces of such equations are, in general, different: a finite-dimensional arithmetic space for solutions of the ordinary differential equation and the infinite-dimensional functional space for solutions of the delay differential equation, the problem to reduce dynamic models to the uniform form is associated with representation of processes in both types of spaces. Based on the interchangeability mechanisms of dynamic models of the process under study, the paper proposes methods to reduce the models of dynamics to a uniform form.The results are verified by direct calculations using the specific examples. Interchangeability is used to compare the oppositely directed processes represented by different types of dynamic models. To compare one-dimensional multidirectional processes, presented by dynamic models of various types and having a different behavior pattern, examples of the error models are given. An accuracy of the comparison model of delay type is illustrated by a numerical simulation example.
Highlights
Àâòîíîìíûå ïðîöåññû íà R è íà CÄëÿ îòîáðàæåíèÿ U (t) âûïîëíåíû ñâîéñòâà (i){(iii) îïðåäåëåíèÿ 1, è ñëåäîâàòåëüíî u(φ, t) åñòü àâòîíîìíûé ïðîöåññ èëè íåïðåðûâíàÿ äèíàìè÷åñêàÿ ñèñòåìà íà D, τ +(φ) = {(t, u(φ, t)), t ≥ 0} | òðàåêòîðèÿ äèíàìè÷åñêîé ñèñòåìû íà D, íà÷èíàþùàÿñÿ â φ, à îòîáðàæåíèå xt(φ): R+ → D | åå èíòåãðàë, ïðîõîäÿùèé ÷åðåç (0, φ), è ìíîæåñòâî M0 = R+ × D | èíòåãðàëüíîå ìíîæåñòâî ýòîé äèíàìè÷åñêîé ñèñòåìû
Ïîëó÷åíû óñëîâèÿ âçàèìîçàìåùàåìîñòè êîíå÷íîìåðíûõ, áåñêîíå÷íîìåðíûõ, è äèñêðåòíûõ ìîäåëåé äèíàìèêè àâòîíîìíûõ ïðîöåññîâ è íà ïðèìåðå îäíîìåðíûõ ïðîöåññîâ ïîêàçàíî, ÷òî ïðè îïðåäåëåííîì ñîîòíîøåíèè ïàðàìåòðîâ ìîäåëåé è ñîîòâåòñòâóþùåì âûáîðå íà÷àëüíûõ ôóíêöèé ýòè óñëîâèÿ óäîâëåòâîðÿþòñÿ
An accuracy of the comparison model of delay type is illustrated by a numerical simulation example
Summary
Äëÿ îòîáðàæåíèÿ U (t) âûïîëíåíû ñâîéñòâà (i){(iii) îïðåäåëåíèÿ 1, è ñëåäîâàòåëüíî u(φ, t) åñòü àâòîíîìíûé ïðîöåññ èëè íåïðåðûâíàÿ äèíàìè÷åñêàÿ ñèñòåìà íà D, τ +(φ) = {(t, u(φ, t)), t ≥ 0} | òðàåêòîðèÿ äèíàìè÷åñêîé ñèñòåìû íà D, íà÷èíàþùàÿñÿ â φ, à îòîáðàæåíèå xt(φ): R+ → D | åå èíòåãðàë, ïðîõîäÿùèé ÷åðåç (0, φ), è ìíîæåñòâî M0 = R+ × D | èíòåãðàëüíîå ìíîæåñòâî ýòîé äèíàìè÷åñêîé ñèñòåìû. Åñëè b âûáðàíî êàê â òåîðåìå 1, òî ïðè c = db àâòîíîìíûé ïðîöåññ, ïîðîæäàåìûé äèñêðåòíîé äèíàìè÷åñêîé ñèñòåìîé (2) íà D ñîâïàäàåò ñ ïðîöåññîì, ïîðîæäàåìûì äèôôåðåíöèàëüíûì óðàâíåíèåì çàïàçäûâàþùåãî òèïà (3) íà D.  óñëîâèÿõ òåîðåìû 2 ïðè d = a äèôôåðåíöèàëüíîå óðàâíåíèå çàïàçäûâàþùåãî òèïà (3) ïîðîæäàåò àâòîíîìíûé ïðîöåññ íà R, êîòîðûé ñîâïàäàåò ñ ïðîöåññîì, ïîðîæäàåìûì îáûêíîâåííûì äèôôåðåíöèàëüíûì óðàâíåíèåì (1). Òåîðåìû 1 è 2 óñòàíàâëèâàþò óñëîâèÿ íà îòîáðàæåíèÿ a, b è c, ïðè êîòîðûõ ïðîöåññ, ïîðîæäàåìûé îáûêíîâåííûì äèôôåðåíöèàëüíûì óðàâíåíèåì (1) íà R, ìîæåò áûòü ïðåäñòàâëåí êàê ïðîöåññ íà C äèñêðåòíîé äèíàìè÷åñêîé ñèñòåìîé (2) èëè äèôôåðåíöèàëüíûì óðàâíåíèåì çàïàçäûâàþùåãî òèïà (3), è íàîáîðîò, êîãäà ïðîöåññ, ïîðîæäàåìûé äèôôåðåíöèàëüíûì óðàâíåíèåì çàïàçäûâàþùåãî òèïà (3) íà C, ìîæåò áûòü ïðåäñòàâëåí íà R îáûêíîâåííûì äèôôåðåíöèàëüíûì óðàâíåíèåì (1)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.