Abstract
As the prevalence of drones increases, understanding and preparing for possible adversarial uses of drones and drone swarms is of paramount importance. Correspondingly, developing defensive mechanisms in which swarms can be used to protect against adversarial Unmanned Aerial Vehicles (UAVs) is a problem that requires further attention. Prior work on intercepting UAVs relies mostly on utilizing additional sensors or uses the Hamilton-Jacobi-Bellman equation, for which strong conditions need to be met to guarantee the existence of a saddle-point solution. To that end, this work proposes a novel interception method that utilizes the swarm’s onboard PID controllers for setting the drones’ states during interception. The drone’s states are constrained only by their physical limitations, and only partial feedback of the adversarial drone’s positions is assumed. The new framework is evaluated in a virtual environment under different environmental and model settings, using random simulations of more than 165,000 swarm flights. For certain environmental settings, our results indicate that the interception performance of larger swarms under partial observation is comparable to that of a one-drone swarm under full observation of the adversarial drone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.