Abstract

Traditional missile guidance laws are designed against fighter aircraft, with a much lower velocity (600–800 m/s) than ballistic missiles. To see whether intercepting a theatre ballistic missile inside the atmosphere is difficult in terms of missile guidance, trajectories of two different re-entry vehicles and the terminal phase of their interception, while the interceptor is guided by its own sensors, are simulated using MATLAB/Simulink. The interception is always successful if the inherent delay of the missile guidance system is small (below 0.5 seconds). The re-entry vehicles follow weaving trajectories, but the amplitude of the weave is small and does not pose problems for the interceptor. Neither does the high velocity of the missile (2,600 m/s), provided that the interceptor is near the inverse trajectory at the start of the terminal phase. Consequently, current missile guidance technology seems to be sufficient against aerodynamically stable missiles, but early detection and tracking are essential for success.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.