Abstract

AbstractPrevious studies of streamwater transit time distributions (TTDs) used isotope tracer information from open precipitation (OP) as inputs to lumped watershed models that simulate the stream isotopic composition to estimate TTD. However, in forested catchments passage of rainfall through the canopy will alter the tracer signature of throughfall (TF) via interception. Here we test the effect of using TF instead of OP on TTD estimates. We sampled a 0.39 km2 catchment (Wüstebach, Germany) for a 19 month period using weekly precipitation and stream isotope data to evaluate changes in stream isotope simulation and TTDs. We found that TF had different effects on TTDs for δ18O and δ2H, with TF leading to up to 4 months shorter transit times. TTDs converged for both isotopes only when using TF. TF improved the stream isotope simulations. These results demonstrate the importance of canopy‐induced isotope tracer changes in estimating streamwater TTDs in forested catchments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.