Abstract

AbstractThe equilibrium between disilenes (R2Si=SiR2) and their silylsilylene (R3Si−SiR) isomers has previously been inferred but not directly observed, except in the case of the parent system H2Si=SiH2. Here, we report a new method to prepare base‐coordinated disilenes with hydride substituents. By varying the bulk of the coordinating base and other silicon substituents, we have been able to control the rearrangement of disilene adducts to their silylsilylene tautomers. Remarkably, 1,2 migration of a trimethylsilyl group is preferred over hydrogen migration. A DFT study of the reaction mechanism provides a rationale for the observed reactivity and detailed information on the bonding situation in base‐stabilized disilenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.