Abstract

ABSTRACTThe permeability of plasmodesmata in the nodal complex of branch cells of Chara corallina was examined by measuring both the transnodal electrical resistance and transnodal fluxes of 36CI and 14C‐buty‐rate. Under normal circumstances, the resistance across the node was low, but increased rapidly in response to metabolic inhibition, pressure gradients across the node or excision of one of the cells. For each of these treatments, there was a substantial reduction in solute transport between the cells. Acidification of the cytoplasm by weak acids or alkalinization by amines did not affect either the electrical resistance or the flux of solutes through the node between whorl cells. The transnodal resistance was significantly higher in older cell pairs, but was unaffected by large transnodal voltage differences or by the passage of action potentials. There was no evidence that short‐term increases in cytoplasmic calcium have any effect on plasmodesmatal permeability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.