Abstract

This paper investigates intercarrier interference (ICI) suppression and channel estimation for the uplink of an orthogonal frequency-division multiple-access (OFDMA) system in a time- and frequency-selective fading channel. In such a doubly selective channel, channel variations within each OFDMA block disrupt the orthogonality among subcarriers and leads to ICI. We develop an appropriate signal model for the OFDMA uplink in a doubly selective fading channel and propose a minimum mean square error (MMSE) scheme and an MMSE successive detection (MMSE-SD) scheme to suppress ICI. It is shown that the MMSE scheme is the optimal linear scheme in terms of maximizing achievable data rate and that the MMSE-SD scheme is able to further remove ICI and exploit the Doppler diversity embedded in time-varying channels. As an essential component in ICI suppression, channel estimation is also considered. A basis expansion model (BEM) is formulated for the OFDMA uplink channel, and a pilot-aided channel-estimation algorithm is developed to track users' channels in the time domain. Simulation results are presented to illustrate the overall performance improvements that can be obtained from using the proposed ICI suppression and channel-estimation schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.