Abstract

AbstractPolycondensates containing sulfonate groups, referred to as concrete superplasticizers, are widely used in the construction industry. A sulfanilic acid–phenol–formaldehyde polycondensate (SPF) with Mw ≈ 100.000 g·mol–1 was synthesized from sulfanilic acid, phenol and formaldehyde by polycondensation reaction, and its intercalation into hydrocalumite type Layered Double Hydroxide (LDH) was investigated. Preparation was done by rehydration of tricalcium aluminate, a cement constituent, in the presence of the polymer. According to the XRD pattern, SPF was successfully intercalated. A d value of approx. 2.6 nm was found. Elemental composition of the new organo‐mineral phase reveals charge balancing of the cationic LDH main layers by the polycondensate. Thermogravimetry indicates that thermal degradation of intercalated SPF occurs at higher temperature, compared to non‐intercalated SPF. According to SEM imaging, the novel Ca‐Al‐LDH phase exhibits the morphology of intergrown platelets. Ultra‐thin nanosheets (foils) with approx. 50 nm thickness were obtained. The layered structure and d value obtained from diffraction analysis were confirmed by TEM imaging. The new hydride can be used as cement and concrete additive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.