Abstract

The intercalations of l-proline into Mg–Al layered double hydroxides (LDH-CO3) have been prepared by three different methods: calcine-recovering, coprecipitation and anion exchange. The products thus obtained have been characterized by several experimental techniques: XRD, FT-IR and DSC-TG. The results show that the original interlayer carbonate ions can be replaced by the organic anions under the controlled conditions. The interlayer spaces of the materials are expanded to 0.86, 1.12 and 1.07 nm. l-proline entered into the layers as vertical and horizontal, the molecules of l-proline may stay in the layers in a bilayer with the carboxylate groups pointing towards the LDHs layers, and the structure models are shown. The crystal has a good regularity of the layered structure, which increases thermal stability of l-proline, and thermal analysis confirms that the intercalation can make l-proline stable up to 429 °C, which is 200 °C higher than that for pure l-proline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call