Abstract

Metformin hydrochloride is an extensively used antidiabetic drug that according to the results reported here is able to spontaneously intercalate layered silicates like the montmorillonite clay mineral following an ion-exchange mechanism. The adsorption isotherm from water solutions shows a great affinity of metformin towards the clay mineral, which can retain about thrice the exchange capacity of the clay. The adsorbed excess was easily removed by washing with water, leading to an intercalation compound that contains 93 meq of metformin per 100 g of montmorillonite, matching the CEC value of this clay. The intercalated metformin is arranged in the interlayer space as a monolayer of monoprotonated molecules, which remain strongly entrapped within the solid. These new hybrid materials were characterized by elemental chemical analysis, XRD, FTIR, TG-DTA, and NMR. We preliminary evaluated the use of the metformin-montmorillonite intercalation compound as a drug delivery system, determining the liberation kinetics of metformin at diverse pH values that mimic the gastrointestinal tract. Although the release rate was not totally slowed down, the system seems promising in view of further optimization for drug delivery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.