Abstract

A general continuum theory is developed for ion intercalation dynamics in a single crystal of rechargeable-battery composite electrode material. It is based on an existing phase-field formulation of the bulk free energy and incorporates two crucial effects: (i) anisotropic ionic mobility in the crystal and (ii) surface reactions governing the flux of ions across the electrode/electrolyte interface, depending on the local free energy difference. Although the phase boundary can form a classical diffusive “shrinking core” when the dynamics is bulk-transport-limited, the theory also predicts a new regime of surface-reaction-limited (SRL) dynamics, where the phase boundary extends from surface to surface along planes of fast ionic diffusion, consistent with recent experiments on LiFePO 4. In the SRL regime, the theory produces a fundamentally new equation for phase transformation dynamics, which admits traveling-wave solutions. Rather than forming a shrinking core of untransformed material, the phase boundary advances by filling (or emptying) successive channels of fast diffusion in the crystal. By considering the random nucleation of SRL phase-transformation waves, the theory predicts a very different picture of charge/discharge dynamics from the classical diffusion-limited model, which could affect the interpretation of experimental data for LiFePO 4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.