Abstract

We developed a completely homogeneous and isothermal method of detecting RNA sequences and demonstrated ultrarapid and direct quantification of pathogenic gene expression with high sensitivity. The assay is based on performing isothermal RNA sequence amplification in the presence of our novel DNA probe, an intercalation activating fluorescence DNA probe, and measuring the fluorescence intensity of the reaction mixture. When detecting mecA gene expression of methicillin-resistant Staphylococcus aureus, we quantified starting copies ranging from 10 to 10 7 copies within 10 min. The primer sequences were designed to bind to secondary structure-free sites of the target RNA, which enabled a totally isothermal protocol to quantify mRNA specifically in a sample of existing genomic DNA. When we applied this to quantifying the expression of marker genes of Vibrio parahaemolyticus and Mycobacterium bovis BCG strain, the results correlated well with the viability of each bacterium. We also demonstrated monitoring Pab gene expression of M. bovis BCG during cultivation with antibiotics. The present method can potentially realize rapid antimicrobial susceptibility testing of slowly growing organisms, such as tuberculosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.