Abstract

A theoretical model of a cardiac muscle fiber (strand) based on core conductor principles and which includes a periodic intercalated disc structure has been developed. The model allows for examination of the mechanism of electrical propagation in cardiac muscle on a microscopic cell-to-cell level. The results of the model simulations demonstrate the discontinuous nature of electrical propagation in cardiac muscle and the inability of classical continuous cable theory to adequately describe propagation phenomena in cardiac muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.