Abstract

Interband transitions in a narrow-gap InSb cylindrical quantum dot (QD) have been theoretically studied in the regime of strong dimensional quantization with allowance for a nonparabolic dispersion of electrons and light holes. The corresponding absorption coefficients and threshold frequencies for a QD array are calculated within the framework of a two-band Kane model for electrons and light holes and a parabolic dispersion law for heavy holes. These threshold frequencies fall in the IR range. Quantitative calculations are performed using the recent data of Moiseev et al. [1] on the growth of InSb quantum dots by liquid phase epitaxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.