Abstract
The evolution of the transmission spectrum of a photonic crystal waveguide under electro-optic tuning was studied in the band of an odd TE-like mode. The spectral signature of the interband scattering from the TM-like mode to the odd TE-like mode was characterized at various bias levels. The shift of the odd-mode band was determined based on a statistical approach to overcome the spectral noise. Simulations were performed to explain the spectral shift based on electro-optic and thermo-optic effects in the active photonic crystal structures. Potential impact of interband scattering on indirect interband-transition-based optical isolators is discussed and potential remedies are offered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.