Abstract
The interaural time difference (ITD) is an important cue for the localization of sounds. ITD changes as little as 10 μs can be detected by the human auditory system. By provision of one ear with a cochlear implant (CI) ITD are altered due to the partial replacement of the peripheral auditory system. A hearing aid (HA), in contrast, does not replace but adds a processing delay component to the peripheral auditory system extending ITD. The aim of the present study was to quantify interaural stimulation timing between these different modalities to estimate the need for central auditory temporal compensation in single sided deaf CI users or bimodal CI/HA users. For this purpose, wave V latencies of auditory brainstem responses evoked either acoustically (ABR) or electrically via the CI (EABR) have been measured. The sum of delays consisting of CI signal processing measured in the MED-EL OPUS2 audio processor and EABR wave V latencies evoked on different intracochlear sites allowed an estimation of the entire CI channel-specific delay for MED-EL MAESTRO CI systems. We compared these values with ABR wave V latencies measured in the contralateral normal hearing or HA provided ear in different frequency bands. The results showed that EABR wave V latencies were consistently shorter than those evoked acoustically in the unaided normal hearing ear. Thus, artificial delays within the audio processor can be implemented to adjust interaural stimulation timing. The currently implemented group delays in the MED-EL CI system turned out to be reasonably similar to those of the unaided ear. For adjustment of CI and contralateral HA, in contrast, an adjustable additional across-frequency delay in the range of 1–11 ms implemented in the CI would be required. Especially for bimodal CI/HA users the adjustment of interaural stimulation timing may induce improved binaural hearing, reduced need for central auditory temporal compensation and increased acceptance of the CI/HA provision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.