Abstract

Interaural intensity differences (IIDs) are important cues that animals use to localize high-frequency sounds. Neurons sensitive to IIDs are excited by stimulation of one ear and inhibited by stimulation of the other ear, such that the response magnitude of the cell depends on the relative strengths of the two inputs, which in turn depends on the sound intensities at the ears. In the auditory midbrain nucleus, the inferior colliculus (IC), many IID-sensitive neurons have response functions that decline steeply from maximum to zero spikes as a function of IID. However, there are also many neurons with much more shallow response functions that do not decline to zero spikes. We present evidence from single-unit recordings in the Free-tailed bat's IC that this partially inhibited response pattern is a result of the inhibitory input to these cells being very brief ( approximately 2 msec). Of the cells sampled, 54 of 137 (40%) achieved partial inhibition when tested with 60 msec tones, and the inhibition to these 54 cells occurred primarily during the first few milliseconds of the excitatory response. Consequently, the initial component of the response was highly sensitive to IIDs, whereas the later component was primarily insensitive to IIDs. Each of the 54 "partially inhibited" cells was able to reach complete inhibition with very short stimuli, such as simulated bat echolocation calls that invoked only the initial, IID-sensitive component. Local application of inhibitory transmitter antagonists disabled the short inhibitory input, indicating that this response pattern is created within the IC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.