Abstract

We report calculations of the interaction-induced polarizability (δαanis), magnetizability (δξanis;) and hypermagnetizability (δηanis) anisotropies for the helium gas as a function of the interatomic separation. From these data we determine the virial coefficients for the Cotton—Mouton effect and the hypermagnetizability anisotropy of helium. We also find the mean polarizability and magnetizability as a function of the interatomic separation and the virial coefficients for these properties. The results for the Cotton—Mouton effect indicate that pressure affects the Cotton—Mouton constant to the same extent as it does the second hyperpolarizability (γ) and the virial coefficient bCME(ω, T) lies in the range of −1.6 to −1.8 cm3 mol−1. This means that pressure effects for the Cotton-Mouton constant could be detected with modern experimental techniques. All calculations were carried out using the full configuration interaction technique and large basis sets of London atomic orbitals. The polarizability calculations were performed both for relevant optical frequencies as well as the static case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.