Abstract

Density-functional calculations are used to determine the electronic structure and magnetic properties of dilute magnetic semiconductors with the composition X1−xMnxN (X=Al, Ga, In, x=6.25% and 12.5%). Emphasis is on the interatomic exchange as a function of the Mn–Mn distance. Our superlattice calculations show that the Mn dopants are spin-polarized with a half-metallic band gap and a magnetic moment of 4μB per Mn atom at x=6.25 and 12.5%. The Mn (3d) bands lie in the band gap but partially hybridize with valence band or N 2p electrons, depending on the group-III element and on the spin direction. To calculate the exchange interaction parameters Jij, we have used a Green-function approach. The interaction between Mn atoms extends over several interatomic interactions and is mediated by nitrogen (2p) electrons. The exchange is always ferromagnetic and largest for the first nearest neighbors, but substantial ferromagnetic interactions persist over Mn–Mn distances up to sixth nearest neighbors in the considered supercell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.