Abstract

During 15 November–31 December, a cold-season rainfall center appears in the southern part of the South China Sea (SCS) north of northwestern Borneo and juxtaposed along the southwest–northeast direction with rainfall centers for the Malay Peninsula and the Philippines. This SCS rainfall center also coincides geographically with the SCS surface trough. An effort is made to explore the formation mechanism of this rainfall center. It is primarily formed by the second intensification of heavy rainfall/flood cold surge vortex [CSV(HRF)] through its interaction with a cold surge flow over the SCS trough. Both the SCS rainfall center and the SCS surface trough are located at the easterly flow north of the near-equator trough. Modulated by the interannual variation of the cyclonic shear flow along the near-equator trough in concert with the El Niño–Southern Oscillation (ENSO) cycle, the SCS rainfall center undergoes an interannual variation. The impact of this ENSO cycle is accomplished through the regulation of CSV(HRF) trajectories originating from the Philippines vicinity and Borneo and propagating to different destinations. Rain-producing efficiency determined by the interannual variation of the divergent circulation accompanies the cyclonic shear flow around the near-equator trough in response to this ENSO cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.