Abstract

AbstractWater vapor and cirrus clouds in the tropical tropopause layer (TTL) are important for the climate and are largely controlled by temperature in the TTL. On interannual timescales, both stratospheric and tropospheric modes of the large‐scale variability could affect temperatures in the TTL. Here multiple linear regression (MLR) is used to investigate explained variance in the cold point tropopause temperature (CPT), cold point tropopause height (CPZ), 83 hPa water vapor (WV83), 83 hPa ozone (O383), and total cirrus cloud fraction with cloud base (TTLCCF) and top (ALLCF) above 14.5 km, all averaged over 15°S‐15°N. Predictors of the MLR are a set of stratospheric and tropospheric large‐scale modes of variability. The MLR explains significant variance in CPT (76%), CPZ (78%), WV83 (65%), O383 (62%), TTLCCF (52%), and ALLCF (36%). The interannual variability of CPT and WV83 is dominated by stratospheric processes associated with the Quasi‐Biennial Oscillation (QBO) and Brewer‐Dobson Circulation (BDC), whereas the variability of CPZ, O383, TTLCCF and ALLCF is also controlled by 500 hPa temperature (T500). Residual variability in CPT and CPZ not captured by the MLR are further significantly correlated to stratospheric temperature. It is shown that the portion of the BDC's shallow branch missed by the eddy heat flux based BDC index contributes significant amounts of the explained variances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call