Abstract
Abstract Interannual changes in the mesoscale eddy field along the Subtropical Countercurrent (STCC) band of 18°–25°N in the western North Pacific Ocean are investigated with 16 yr of satellite altimeter data. Enhanced eddy activities were observed in 1996–98 and 2003–08, whereas the eddy activities were below average in 1993–95 and 1999–2002. Analysis of repeat hydrographic data along 137°E reveals that the vertical shear between the surface eastward-flowing STCC and the subsurface westward-flowing North Equatorial Current (NEC) was larger in the eddy-rich years than in the eddy-weak years. By adopting a 2½-layer reduced-gravity model, it is shown that the increased eddy kinetic energy level in 1996–98 and 2003–08 is because of enhanced baroclinic instability resulting from the larger vertical shear in the STCC–NEC’s background flow. The cause for the STCC–NEC’s interannually varying vertical shear can be sought in the forcing by surface Ekman temperature gradient convergence within the STCC band. Rather than El Niño–Southern Oscillation signals as previously hypothesized, interannual changes in this Ekman forcing field, and hence the STCC–NEC’s vertical shear, are more related to the negative western Pacific index signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.