Abstract

Africa is thought to be a large source of interannual variability in the global carbon cycle, only vaguely attributed to climate fluctuations. This study uses a biophysical model, Simple Biosphere, to examine in detail what specific factors, physiological (acute stress from low soil water, temperature, or low humidity) and biophysical (low vegetation radiation use), are responsible for spatiotemporal patterns of photosynthesis across the African continent during the period 1982–2003. Acute soil water stress emerges as the primary factor driving interannual variability of photosynthesis for most of Africa. Southern savannas and woodlands are a particular hot spot of interannual variability in photosynthesis, owing to high rainfall variability and photosynthetic potential but intermediate annual rainfall. Surprisingly low interannual variability of photosynthesis in much of the Sudano‐Sahelian zone derives from relatively low vegetation cover, pronounced humidity stress, and somewhat lower rainfall variability, whereas perennially wet conditions diminish interannual variability in photosynthesis across much of the Congo Basin and coastal West Africa. Though not of focus here, the coefficient of variation in photosynthesis is notably high in drylands and desert margins (i.e., Sahel, Greater Horn, Namib, and Kalahari) having implications for supply of food and fiber. These findings emphasize that when considering impacts of climate change and land surface feedbacks to the atmosphere, it is important to recognize how vegetation, climate, and soil characteristics may conspire to filter or dampen ecosystem responses to hydroclimatic variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call