Abstract

Heat waves can provide detrimental impacts on human society and the environmental system, and thus have received substantial attention in scientific research. Since heat waves are relevant to a wide range of stakeholders, definitions for heat wave events vary in terms of threshold values, durations, and utilized variables. While there is a value in this diversity of perspectives, the various definitions often complicate the assessment of heat wave risk, thereby underscoring the improved utility of a unified definition. In this study, we examine the interannual variability of heat wave patterns by using a proposed copula-based framework. From five observed temperature-related variables, this study first evaluates the individual changes of fifteen previously published heat wave indices focused on heat wave events across the Korean Peninsula for the last 49 years (1973–2021). We then extract the integrated signals to understand the overall trend patterns using the multiple heat wave indices. Results indicate that different heat wave definitions present distinctive attributes (e.g., in the magnitude of temporal changes) depending on the locations, implying that the diversity of heat wave definitions leads to potentially inconsistent conclusions. Using the integrated analysis, we identify that the expected heat wave day has increased across the majority of the regions in the Korean Peninsula. To be specific, substantial increases are shown in North Korea, while rapid increases in heat wave events have been observed after the year 2010 over South Korea. Finally, through the sensitivity analysis, we demonstrate the importance of choosing the heat wave definition in the integrated analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call