Abstract
Abstract This paper describes aspects of tropical interannual ocean/atmosphere variability in the NCAR Community Climate System Model Version 2.0 (CCSM2). The CCSM2 tropical Pacific Ocean/atmosphere system exhibits much stronger biennial variability than is observed. However, a canonical correlation analysis technique decomposes the simulated boreal winter tropical Pacific sea surface temperature (SST) variability into two modes, both of which are related to atmospheric variability during the preceding boreal winter. The first mode of ocean/atmosphere variability is related to the strong biennial oscillation in which La Niña–related sea level pressure (SLP) conditions precede El Niño–like SST conditions the following winter. The second mode of variability indicates that boreal winter tropical Pacific SST anomalies can also be initiated by SLP anomalies over the subtropical central and eastern North Pacific 12 months earlier. The evolution of both modes is characterized by recharge/discharge within the equatorial subsurface temperature field. For the first mode of variability, this recharge/discharge produces a lag between the basin-average equatorial Pacific isotherm depth anomalies and the isotherm–slope anomalies, equatorial SSTs, and wind stress fields. Significant anomalies are present up to a year before the boreal winter SLP variations and two years prior to the boreal winter ENSO-like events. For the second canonical factor pattern, the recharge/discharge mechanism is induced concurrent with the boreal winter SLP pattern approximately one year prior to the ENSO-like events, when isotherms initially deepen and change their slope across the basin. A rapid deepening of the isotherms in the eastern equatorial Pacific and a warming of the overlying SST anomalies then occurs during the subsequent 12 months.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.