Abstract

The role of spring Wyrtki jets in modulating the equatorial Indian Ocean and the regional climate is an unexplored problem. The source of interannual variability in the spring Wyrtki jets is explored in this study. The relationship between intraseasonal and interannual variability from 1958 to 2008 and its relation with Indian Summer Monsoon is further addressed. Analysis reveals that the interannual variability in spring Wyrtki jets is controlled significantly by their intraseasonal variations. These are mostly defined by a single intraseasonal event of duration 20days or more which either strengthens or weakens the seasonal mean jet depending on its phase. The strong spring jets are driven by such intraseasonal westerly wind bursts lasting for 20-days or more, whereas the weak jets are driven by weaker intraseasonal westerlies. During the years of strong jets, the conventional westward phase propagation of Wyrtki jets is absent and instead there is an eastward phase propagation indicating the possible role of Madden Julian Oscillation (MJO) in strengthening the spring Wyrtki jets. These strong intraseasonal westerly wind bursts with eastward phase propagation during strong years are observed mainly in late spring and have implications on June precipitation over the Indian and adjoining land mass. Anomalously strong eastward jets accumulate warm water in the eastern equatorial Indian Ocean (EIO), leading to anomalous positive upper ocean heat content and supporting more local convection in the east. This induces subsidence over the Indian landmass and alters monsoon rainfall by modulating monsoon Hadley circulation. In case of weak current years such warm anomalies are absent over the eastern EIO. Variations in the jet strength are found to have strong impact on sea level anomalies, heat content, salinity and sea surface temperature over the equatorial and north Indian Ocean making it a potentially important player in the north Indian Ocean climate variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.