Abstract
El Niño/Southern Oscillation (ENSO) events are known to force atmospheric teleconnections that impact extratropical sea surface temperatures and surface winds. In this paper we use focused model experiments to investigate whether this extratropical variability can feedback to, and significantly impact, the Tropics through ocean Rossby waves. We use an atmospheric general circulation model coupled to a reduced gravity Pacific Ocean model to isolate these potential feedback loops and quantify their impact on ENSO variability. We find that anomalous winds and heat fluxes located in regions of maximum mean subduction in the subtropical North Pacific trigger ocean Rossby waves that take approximately four years to reach the equator. Most notably, we demonstrate that this feedback loop causes a primarily 2‐year ENSO, when only the Tropics is coupled, to shift to a more realistic broad 2–5 year range by damping ∼2 year variability and amplifying ∼4 year variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.