Abstract

Despite numerous animal trials reporting that cell therapy promotes collateral flow, clinical trials have not convincingly shown benefit. Patient-related risk factors are often used to explain these discrepancies. However, during the course of our own angiogenesis studies using mice, we noted large anatomical variability in collateral vessels. The purpose of the present investigation was to define how important this factor might be in determining intervention outcomes. Hindlimb ischemia was induced in BALB/c mice by ligating the superficial femoral artery. After 24 h, animals were treated by injecting the adductor muscle with either control media or cultured mesenchymal stem cells (MSCs). Blood flow recovery was measured using laser-Doppler [laser-Doppler perfusion imaging (LDPI) ratio]. In a second experiment, mice were stratified 24 h after arterial ligation before treatment by using a simple clinical score of the ligated leg: 1, able to flex, mild discoloration; 2, no flexion, mild discoloration; 3, severe discoloration; and 4, any necrosis. Without stratification, blood flow recovery significantly increased in the MSC-treated group (P < 0.05, n = 6 MSC group, n = 7 media group). In the experiment employing stratification, all differences between the groups disappeared (n = 11 MSC group, n = 10 media group; P = 0.3). Furthermore, we found a striking inverse correlation between clinical score on day 1 and the LDPI ratio on day 28 (P < 0.0001; n = 79). Anatomical confirmation of the disparity in preexisting collaterals was found in two different mouse strains using microscopic computed tomography. In conclusion, there is substantial interanimal variability in preexisting collateral flow, and this variability can importantly influence outcome. To overcome this, either animals must be stratified before treatment, the number of animals must be increased substantially, or, preferably, both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.