Abstract

In this paper, we present an algorithm that accelerates 3D texture-based volume rendering of large, sparse data sets, i.e., data sets where only a traction of the voxels contain relevant information. In texture-based approaches, the rendering performance is affected by the fill-rate, the size of texture memory, and the texture I/O bandwidth. For sparse data, these limitations can be circumvented by restricting most of the rendering work to the relevant parts of the volume. In order to efficiently enclose the corresponding regions with axis-aligned boxes, we employ a hierarchical data structure, known as an AMR (adaptive mesh refinement) tree. The hierarchy is generated utilizing a clustering algorithm. A good balance is thereby achieved between the size of the enclosed volume, i.e., the amount to render in graphics hardware and the number of axis-aligned regions, i.e., the number of texture coordinates to compute in software. The waste of texture memory by the power-of-two restriction is minimized by a 3D packing algorithm which arranges texture bricks economically in memory. Compared to an octree approach, the rendering performance is significantly increased and less parameter tuning is necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.