Abstract

The visualization of geographic vector data is an important premise for spatial analysis and spatial cognition. Traditional geographic vector data visualization methods are data-driven, and their computational costs have increased rapidly with the growth of the scale of data used. Even if the distributed parallel strategy is used, it is still difficult to achieve a real-time response when dealing with big geographic vector data (BGVD). To solve this problem, this paper proposes a viewport generalization model and a visualization method for the online interactive visualization of BGVD. The method takes the viewport display pixel as the analysis unit and synthesizes the existence or quantity results of geographic vector data in the corresponding spatial range of each viewport display pixel into the display value of this display pixel; thus, it converts traditional computational complexity, dependent on the data scale, into computational complexity dependent on the number of pixels in the viewport. When the number of pixels in the viewport is much smaller than that of the geographic vector data, the visualization efficiency is greatly improved. In order to realize the above conversion, the pixel quadtree index (VPQ) structure and the real-time visualization algorithm of geographic vector data based on VPQ are proposed. Experiments show that the proposed method can achieve the near-real-time interactive visualization of BGVD, and provides more than a tenfold performance improvement over the best existing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call