Abstract
Multidimensional data sets are becoming more frequent in practically all research fields, and require complex data analysis techniques in order to extract knowledge from them. In this paper, we propose an interactive visualization tool for performing exploratory data analysis. The tool combines unsupervised and supervised dimensionality reduction methods, such as linear discriminant analysis, or t-SNE, with clustering and classification techniques. Analysts can use several machine learning methods for extracting data structure, and can group data into clusters interactively or through clustering algorithms. In addition they can visualize projections of the data to evaluate the quality of obtained clusters, and to analyze the performance of classification methods. We have applied this tool to analyze a clinical data set related to patients with dermatologic conditions that are under photodynamic therapy. The analysis allowed medical doctors to identify several clinically interesting patient groups. In addition, clinicians discovered a greater efficacy in the treatment of patients with the photosensitizer 5-aminolaevulinic acid nanoemulsion gel compared to those treated with methyl-5-aminolaevulinate cream.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.