Abstract
AbstractWe describe a representation for tree leaves and an interactive modeling system for creating realistic close‐up images of leaf clusters. The planar outline of the leaf and the larger members of its venation system are strong factors in the recognition of plant species and as such are essential to realistic imaging. The larger veins also play a major biological role in determining the leaf surface shape and it is this role that we mimic in the shape modeling discussed in this paper. The proposed representation uses a model of a leaf consisting of a three‐dimensional skeleton formed by its larger veins and a surface membrane representing the leaf lamina that spans the void between the veins. The veins play two roles. They can be interactively modified to create the 3‐D shape of the leaf model. They also provide for realistic light and shadow effects when rendered as generalized cylinders using measured width parameters. The representation consists of two coupled data structures, a tree data structure of veins for the leaf skeleton and an unstructured triangular mesh for the leaf membrane. The skeleton is modified by the user of the modeling system, and the membrane mesh is a surface mesh that follows the skeleton shape computed using harmonic interpolation. Copyright © 2005 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.