Abstract

AbstractAutomated reasoning is the study of computer programs that can build proofs of theorems in a logic. Such programs can be either automatic theorem provers or interactive theorem provers. The latter are also called proof assistants because the user constructs the proofs with the help of the system. We focus on the Isabelle proof assistant. The system ensures that the proofs are correct, in contrast to pen-and-paper proofs which must be checked manually. We present applications to logical systems and models of information, in particular selected modal logics extending classical propositional logic. Epistemic logic allows intelligent systems to reason about the knowledge of agents. Public announcements can change the knowledge of the system and its agents. In order to account for this, epistemic logic can be extended to public announcement logic. An axiomatic system consists of axioms and rules of inference for deriving statements in a logic. Sound systems can only derive valid statements and complete systems can derive all valid statements. We describe formalizations of sound and complete axiomatic systems for epistemic logic and public announcement logic, thereby strengthening the foundations of automated reasoning for logic and information.KeywordsInteractive theorem provingPropositional logicEpistemic logicPublic announcement logicIsabelle/HOL proof assistant

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.