Abstract
This paper addresses the problem of interactive multiclass segmentation of images. We propose a fast and efficient new interactive segmentation method called superpixel α fusion (SαF). From a few strokes drawn by a user over an image, this method extracts relevant semantic objects. To get a fast calculation and an accurate segmentation, SαF uses superpixel oversegmentation and support vector machine classification. We compare SαF with competing algorithms by evaluating its performances on reference benchmarks. We also suggest four new datasets to evaluate the scalability of interactive segmentation methods, using images from some thousand to several million pixels. We conclude with two applications of SαF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.