Abstract

We present a technique for interactive relighting in which source radiance, viewing direction, and BRDFs can all be changed on the fly. In handling dynamic BRDFs, our method efficiently accounts for the effects of BRDF modification on the reflectance and incident radiance at a surface point. For reflectance, we develop a BRDF tensor representation that can be factorized into adjustable terms for lighting, viewing, and BRDF parameters. For incident radiance, there exists a non-linear relationship between indirect lighting and BRDFs in a scene, which makes linear light transport frameworks such as PRT unsuitable. To overcome this problem, we introduce precomputed transfer tensors (PTTs) which decompose indirect lighting into precomputable components that are each a function of BRDFs in the scene, and can be rapidly combined at run time to correctly determine incident radiance. We additionally describe a method for efficient handling of high-frequency specular reflections by separating them from the BRDF tensor representation and processing them using precomputed visibility information. With relighting based on PTTs, interactive performance with indirect lighting is demonstrated in applications to BRDF animation and material tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.