Abstract

This paper presents a method for the design of nonconservative low-order controllers achieving robust performance in the case of multi-input single-output parallel structure plants subject to unstructured uncertainty. The first step is the analytical generation of gain-phase controller bounds, as in quantitative feedback theory (QFT). Then, to avoid the difficult step of QFT loop shaping, which often produces high-order controllers, these bounds are translated into the controller parameter space where the iterative design of low fixed order controllers takes place. This, as well as the design transparency offered by this technique, constitutes appreciable advantages over the other popular robust performance design method of /spl mu/-synthesis. Other important features are the fact that no extra conservatism is introduced by the method presented and the fact that the method is directly compatible with a sequential loop closing strategy. Finally, the direct search optimization of any additional secondary criteria is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call