Abstract

A crystallized TiO 2 thin film was prepared by electrolytic anodization of a pure Ti mesh in sulfuric acid–phosphoric acid–hydrogen peroxide and hydrofluoric acid–sodium fluorid–hydrogen peroxide electrolyte solutions. The TiO 2 particles directly grown on the Ti mesh surface had the regular anatase crystal structure. The TiO 2 thin film showed a multiporous structure and the mean micropore size was about 260 nm. The azo dye orange-G degradation reaction was studied in an undivided cell by using the air-diffusion reticulated vitreous carbon as the cathode for the H 2O 2 electrogeneration and TiO 2–Ti mesh as the photoanode for the photoelectrocatalysis under ultraviolet light irradiation. The heterogeneous photoelectrocatalysis and the homogeneous electro-Fenton reaction simultaneously occurred in one reaction system, while H 2O 2 was produced by a two-electron reduction of oxygen and the ferrous ion was supplied by the dosing or electrogeneration method. In the photo-electro-integrated oxidation reaction system, both the degradation rate and the removal ratio of total organic carbon were enhanced for orange-G dye which was ascribed to interactive oxidation processes of photoelectrocatalysis, electro-Fenton and electrooxidation reaction. Ion chromatogram results indicate that the total mineralization reaction was much delayed to produce inorganic ions and groups although the complete decolorizing degradation could be achieved for orange-G dye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.