Abstract
This paper studies the problem of real-time traffic estimation and incident detection by posing it as a hybrid state estimation problem. An interactive multiple model ensemble Kalman filter is proposed to solve the sequential estimation problem, and to accommodate the switching dynamics and nonlinearity of the traffic incident model. The effectiveness of the proposed algorithm is evaluated through numerical experiments using a perturbed traffic model as the true model. The supporting source code is available for download at https://github.com/Lab-Work /IMM_EnKF_Traffic_Estimation_Incident_Detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.