Abstract

Bevel-tip steerable needles for minimally invasive medical procedures can be used to reach clinical targets that are behind sensitive or impenetrable areas and are inaccessible to straight, rigid needles. We present a fast algorithm that can compute motion plans for steerable needles to reach targets in complex, 3D environments with obstacles at interactive rates. The fast computation makes this method suitable for online control of the steerable needle based on 3D imaging feedback and allows physicians to interactively edit the planning environment in real-time by adding obstacle definitions as they are discovered or become relevant. We achieve this fast performance by using a Rapidly Exploring Random Tree (RRT) combined with a reachability-guided sampling heuristic to alleviate the sensitivity of the RRT planner to the choice of the distance metric. We also relax the constraint of constant-curvature needle trajectories by relying on duty-cycling to realize bounded-curvature needle trajectories. These characteristics enable us to achieve orders of magnitude speed-up compared to previous approaches; we compute steerable needle motion plans in under 1 second for challenging environments containing complex, polyhedral obstacles and narrow passages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.