Abstract
The hypothalamic–pituitary–adrenal (HPA) and hypothalamic–pituitary–gonadal (HPG) axes have reciprocal relationships with steroidogenesis regulation. However, the relationship between testicular steroids and defective glucocorticoid production under chronic stress remains unclear. Metabolic changes of testicular steroids in bilateral adrenalectomized (bADX) 8-week-old C57BL/6 male mice were measured using gas chromatography-mass spectrometry. Twelve weeks after surgery, testis samples were obtained from the model mice, which were divided into tap-water (n = 12) and 1 % saline (n = 24) supplementation groups, and their testicular steroid levels were compared with those of sham controls (n = 11). An increased survival rate with lower testicular levels of tetrahydro-11-deoxycorticosterone was observed in the 1 % saline group compared to both the tap-water (p = 0.029) and sham (p = 0.062) groups. Testicular corticosterone levels were significantly decreased in both tap-water (4.22 ± 2.73 ng/g, p = 0.015) and 1 % saline (3.70 ± 1.69, p = 0.002) groups compared to those in sham controls (7.41 ± 7.39). Testicular testosterone levels tended to increase in both bADX groups compared to those in the sham controls. In addition, increased metabolic ratios of testosterone to androstenedione in tap-water (2.24 ± 0.44, p < 0.05) and 1 % saline (2.18 ± 0.60, p < 0.05) mice compared to sham controls (1.87 ± 0.55) suggested increased production of testicular testosterone. No significant differences in serum steroid levels were observed. Defective adrenal corticosterone secretion and increased testicular production in bADX models revealed an interactive mechanism underlying chronic stress. The present experimental evidence suggests the crosstalk between the HPA and HPG axes in homeostatic steroidogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Steroid Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.